skip to main content


Search for: All records

Creators/Authors contains: "Scribner, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The growing ubiquity of artificial intelligence (AI) is reshaping much of daily life. This in turn is raising awareness of the need to introduce AI education throughout the K-12 curriculum so that students can better understand and utilize AI. A particularly promising approach for engaging young learners in AI education is game-based learning. In this work, we present our efforts to embed a unit on AI planning within an immersive game-based learning environment for upper elementary students (ages 8 to 11) that utilizes a scaffolding progression based on the Use-Modify-Create framework. Further, we present how the scaffolding progression is being refined based on findings from piloting the game with students. 
    more » « less
    Free, publicly-accessible full text available June 29, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. AI is beginning to transform every aspect of society. With the dramatic increases in AI, K-12 students need to be prepared to understand AI. To succeed as the workers, creators, and innovators of the future, students must be introduced to core concepts of AI as early as elementary school. However, building a curriculum that introduces AI content to K-12 students present significant challenges, such as connecting to prior knowledge, and developing curricula that are meaningful for students and possible for teachers to teach. To lay the groundwork for elementary AI education, we conducted a qualitative study into the design of AI curricular approaches with elementary teachers and students. Interviews with elementary teachers and students suggests four design principles for creating an effective elementary AI curriculum to promote uptake by teachers. This example will present the co-designed curriculum with teachers (PRIMARYAI) and describe how these four elements were incorporated into real-world problem-based learning scenarios. 
    more » « less
  4. As artificial intelligence (AI) technology becomes increasingly pervasive, it is critical that students recognize AI and how it can be used. There is little research exploring learning capabilities of elementary students and the pedagogical supports necessary to facilitate students’ learning. PrimaryAI was created as a 3rd-5th grade AI curriculum that utilizes problem-based and immersive learning within an authentic life science context through four units that cover machine learning, computer vision, AI planning, and AI ethics. The curriculum was implemented by two upper elementary teachers during Spring 2022. Based on pre-test/post-test results, students were able to conceptualize AI concepts related to machine learning and computer vision. Results showed no significant differences based on gender. Teachers indicated the curriculum engaged students and provided teachers with sufficient scaffolding to teach the content in their classrooms. Recommendations for future implementations include greater alignment between the AI and life science concepts, alterations to the immersive problem-based learning environment, and enhanced connections to local animal populations. 
    more » « less
  5. Recent years have seen growing recognition of the importance of enabling K-12 students to learn computer science. Meanwhile, artificial intelligence, a field of computer science, has with the potential to profoundly reshape society. This has generated increasing demand for fostering an AI-literate populace. However, there is little work exploring how to introduce K-12 students to AI and how to support K-12 teachers in integrating AI into their classrooms. In this work, we explore how to introduce AI learning experiences into upper elementary classrooms (student ages 8 to 11). With a focus on integrating AI and life science, we present initial work on a collaborative game-based learning environment that features rich problem-based learning scenarios that enable students to gain experience with AI applied toward solving real-world life-science problems. 
    more » « less